
Splicing BPF maps
to the NIC

John Fastabend, Kornilios Kourtis, Mahé Tardy

Case A: events journey in Tetragon

Case B: less copying

Case C: low latency BPF events

Main motivation

- Running without a userspace agent
- No perf ring issues to transmit event/alert between BPF and the agent
- Instant alerting mechanism for low latency
- Less context switch and copies of events

Why splice

- We initially thought of splice because it allows for zero copy between kernel
and userspace

- Also generic and could be used to wire files/network.
- Splice seems to not be in a very appealing position nowadays (see Rethinking

splice())
- Maybe use io_uring for async IO from bpf? (see Add bpf for io_uring, not

really related but allowing to run bpf prog from io_uring events)
- Maybe just start with network send.

https://lwn.net/Articles/923237/
https://lwn.net/Articles/923237/
https://lwn.net/Articles/997803/

PoC B

PoC C

PoC C goal

Discussions

● Was this idea already discussed?
● Start with network instead of splice (see Rethinking

splice())?
● What kind of interface for passing the fd?

● Benchmark different solutions? What’s the benefit
of approach C over B?

● IO approach?
○ sleepable, in kfunc
○ or using io_uring queues

● Latency (alerting) vs bandwidth (send to a data
lake) use-cases:

○ Approach C seems better than B for the
latency use-case

● Output format? Could use apache arrow.

https://lwn.net/Articles/923237/
https://lwn.net/Articles/923237/

Kfunc Timer kit [agentless send]

int sent;
struct bpf_timer *timer; //sleepable timers
int __arena *ptr

main() {
 bpf_timer_set_callback(timer, send_callback);
 bpf_timer_start(timer, nsec_future, 0);
}

void send_callback() { // sleepable callback
 ptr = &my_bpf_map; // arena
 tcp_sk = bpf_map_lookup(&tcp_endpoints, 0);
 sent += bpf_send(tcp_sk, kptr, sizeof(my_bpf_map));
 bpt_timer_start(timer, nsec_future, 0)
}

