Splicing BPF maps
to the NIC

John Fastabend, Kornilios Kourtis, Mahé Tardy

Case A: events journey in Tetragon

event == == =N copies= = P t
agent

.

|
read

nd/writ
ring buffer

write

bpf prog e create =P event network/file/pipe

user

kernel

Case B: less copying

BPF_F_MMAPABLE
BPF_MAP_TYPE_ARRAY
BPF_MAP_TYPE_ARENA

: agent

mmap

bpf prog === create = event w—Write =P BPF_F_MMAPABLE
BPF_MAP_TYPE_ARRAY

BPF_MAP_TYPE_ARENA

vmsplice

network/file/pipe

Case C: low latency BPF events

agent

user fd

kernel

vmsplice(file, event)
bpf prog == create = event e gend(file, event) =) network/file/pipe
write(file, event)

Main motivation

- Running without a userspace agent

- No perf ring issues to transmit event/alert between BPF and the agent
- Instant alerting mechanism for low latency

- Less context switch and copies of events

Why splice

- We initially thought of splice because it allows for zero copy between kernel
and userspace

- Also generic and could be used to wire files/network.

- Splice seems to not be in a very appealing position nowadays (see_Rethinking
splice())

- Maybe use io_uring for async 10 from bpf? (see Add bpf for io_uring, not
really related but allowing to run bpf prog from io_uring events)

- Maybe just start with network send.

https://lwn.net/Articles/923237/
https://lwn.net/Articles/923237/
https://lwn.net/Articles/997803/

PoC B

~ load loader vmsplice(2)

user mmap
pipe

kernel

v

bof bro steal fd bpf map NIC s
fexit/d: (:,ntrg open BEF_MAR_TYFE ARRAY
=R —— write—> BPF_F_MMAPABLE

FS—>

user

load

PoC C

loader

mmap

kernel

fexit/do_entry_open

—Write =—p

steal fd

call

i
hpd map steal

user
address

BPF_MAP_TYPE_ARRAY

BPF_F_MMAPABLE

kfunc
bpf_splice

—vmsplice_to_pipe—J

pipe

user

kernel

PoC C goal

4 load loader
pipe
v
L 3
(] —p bpf map
bpf prog BPF_MAP_TYPE_ARENA

— Write = BPF_F_MMAPABLE?

get kernel address

kf i i
call > unc vmsplice_to_pipe)

bpf_splice splice_to_pipe?

Discussions

e Was this idea already discussed?
Start with network instead of splice (see Rethinking
splice())?

e What kind of interface for passing the fd?

e Benchmark different solutions? What'’s the benefit
of approach C over B?
e |0 approach?
o sleepable, in kfunc
o orusingio_uring queues
e Latency (alerting) vs bandwidth (send to a data
lake) use-cases:
o Approach C seems better than B for the
latency use-case
e Output format? Could use apache arrow.

user

kernel

bpf prog

load

b =—

= write ==

call m——p

loader

bpf map
BPF_MAP_TYPE_ARENA
BPF_F_MMAPABLE?

get kernel address

kfunc
bpf_splice

vmsplice_to_pipe),

pipe

splice_to_pipe?

https://lwn.net/Articles/923237/
https://lwn.net/Articles/923237/

Kfunc Timer kit [agentless send]

int sent;
struct bpf_timer *timer; //sleepable timers
int__arena *ptr

main() {
bpf_timer_set_callback(timer, send_callback);
bpf_timer_start(timer, nsec_future, 0);

}

void send_callback() { // sleepable callback
ptr = &my_bpf _map; // arena
tcp_sk = bpf_map_lookup(&tcp_endpoints, 0);
sent += bpf_send(tcp_sk, kptr, sizeof(my_bpf _map));
bpt_timer_start(timer, nsec_future, 0)

}

